
1

 SHAMROCK: A Synthesizable High Assurance Cryptography and Key
Management Coprocessor

David Whelihan, Michael Vai, Dan Utin, Roger Khazan, Karen Gettings, Tom Anderson,

Antonio Godfrey, Raymond Govotski, Mark Yeager, Brendon Chetwynd, Ben Nahill, and Eric Koziel

Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA 02420

Abstract — For performance, maintainability and usability,

military communications systems must properly integrate and

coordinate cryptographic primitives and use adequate key

management schemes. In this paper, we present a SHAMROCK

(Synthesizable High Assurance Management/Reservation/

Operation of Cryptography and Keys) coprocessor. Being self-

contained and synthesizable, SHAMROCK empowers designers

to readily and correctly incorporate cryptography and key

management into embedded systems. SHAMROCK has been

incorporated in multiple mission critical systems to enable secure

computing and communications.

Keywords — secure communications; security coprocessor;

high assurance; cryptography; key management; synthesizable.

I. INTRODUCTION

Modern cryptographic algorithms are designed with
Kerckhoffs’ Principle in mind – that a system should remain
secure even when the attacker knows everything from
algorithms to code structure, as long as the secret key is
protected [1]. The security of such a system hinges upon the
effectiveness of key management, which is the process and
apparatus for creating, disseminating, using, and revoking
cryptographic keys.

Unlike standard cryptographic operations (e.g., encryption),
key management needs to be customized according to the
nature of an application [2]. Any hardware/software
vulnerabilities in key management will result in the
compromise of communication security.

This paper describes the architecture and implementation
details of SHAMROCK, which is a synthesizable coprocessor
for cryptography and key management developed to simplify
the creation of robust secure systems. SHAMROCK is a
hardware implementation of the Lincoln Laboratory Open
Cryptographic and Key Management Architecture (LOCKMA)
software library package, which enables rapid dynamic
rekeying of communicating devices in real-time.

LOCKMA supports good cryptography and key
management practices. However, in general a software only
solution is insufficient to guarantee the security of the keys as
system software (e.g., the operating system) could have
unrestricted access to the memory used for processing keys.
Special hardware extensions are necessary to achieve high
assurance that keys are kept secret. SHAMROCK addresses

high assurance by physically separating critical information
from its host application.

The paper is structured as follows: Section 2 briefly
reviews Public Key Infrastructure (PKI) based key
management technology. Section 3 describes LOCKMA’s
dynamic, distributed key management in detail. Section 4
discusses the implementation of the high assurance
SHAMROCK coprocessor.

II. KEY MANAGEMENT BACKGROUND

Distributed, dynamic systems are connected via complex,
real-time communication networks. The essential requirement
of such systems is their resiliency to unintentional (e.g., bugs)
and maliciously induced (e.g., attacks) faults. Successful
operation is enabled by allowing individual devices to
communicate with each other over encrypted channels and
dynamically including and excluding devices from a
communicating group as they become trusted, or untrusted.

An example of using rekeying to dynamically adjust group
membership for three devices, A, B, and C, is illustrated in Fig.
1. These devices communicate to each other via encrypted
channels. In Fig. 1a, the three devices are able to communicate
using the same key. If device C is no longer used (or trusted)
for the application, the system is reconfigured by excluding
device C from the communicating group. This process is
described in Fig. 1b, where device A initiates a rekey operation
by sending out a keywrap that can be unwrapped only by
device B. As shown in Fig. 1c, the encrypted communication
now switches to the new key contained in the keywrap, thus
excluding device C from the communicating group.

The critical technology that enables such rekeying is PKI
[3]. In the commonly used key agreement function, such as
Elliptic Curve Diffie-Hellman (ECDH), each communicating
device holds a secret private key and an associated public key.
Communicating devices can exchange their public keys over
unprotected channel and use ECDH to derive a shared secret.
The shared secret is then used to establish symmetric keys for
the encrypted communication channels.

A digital signature is an important function in PKI. Digital
signature algorithms, such as the Elliptic Curve Digital
Signature Algorithm (ECDSA), work by computing a
cryptographic hash of a message using, for example, the Secure
Hash Algorithm (SHA). The message is then signed by
deriving a value based on a private key, the message hash, and
other meta-data. The receiver of a message can verify its
source by running ECDSA using the message hash and the
matching public key.

Distribution A: Public Release. This material is based upon work

supported by the Assistant Secretary of Defense for Research and Engineering

under Air Force Contract No. FA8721- 05-C-0002 and/or FA8702-15-D-0001.

Any opinions, findings, conclusions or recommendations expressed in this

material are those of the author(s) and do not necessarily reflect the views of

the Assistant Secretary of Defense for Research and Engineering.

2

Fig. 1. Group management enabled by dynamic rekeying.

Another critical aspect of PKI is the Certificate Authority
(CA), which is an entity that issues digital certificates to certify
the ownership of a public key by the named subject of the
certificate. Using the CA’s public certificate, one can verify
that an issued certificate was signed with the CA’s private key.
If the device trusts the CA and verifies that it has received a
CA signed certificate, then the device can trust the certificate.

III. LOCKMA LIBRARY

LOCKMA is a highly portable, modular, open software
library of key management and cryptography algorithms,
which provides user, identity, and key management functions,
as well as support for hardware and software Suite B
cryptographic primitives [4]. LOCKMA has an intuitive front-
end Application Programming Interface (API) so developers
can easily create security functions.

Fig. 2 shows LOCKMA’s interfaces as high-level security
functions and low-level cryptographic primitives. Complicated
cryptographic algorithms are captured as core modules. The
back-end API supports the use of low-level cryptographic
kernels implemented in either hardware or software.

LOCKMA uses PKI, along with cryptographic functions
such as Advanced Encryption Standard (AES) [5] to produce
keywraps to orchestrate key exchanges between groups of
devices. These key exchanges are facilitated by the generation
of multi-recipient keywraps that encrypt a set of symmetric
keys into a Key Update Block (KUB). The structure of a
keywrap generated by the LOCKMA library is shown in Fig. 3.

Fig. 3 illustrates the keywrap’s nested structure with the
outer layer consisting of the certificate of the keywrap sender,
and a signed KUB. Each device that runs LOCKMA must have
at least one public-private key pair for key agreement. The
keywrap issuer must have an additional key pair for signing of
the KUB. The issuer of a keywrap must include its public
signing key in a certificate signed by an authority trusted by all
participants in the communicating group.

Fig. 2. LOCKMA provides application interface, high level
security function, and low level cryptographic kernels.

Fig. 3. LOCKMA keywrap structure.

The signed KUB has four components: the issuer’s
Ephemeral Public Key (EPK) used for key agreement; two
one-time single-use Numbers-Used-Once, or nonces UKMKA
(for key agreement) and UKMMPEK (for mission package
encryption key) that introduce unique randomness to
subsequent transactions; a participant record that is used by
authorized recipients to decrypt the cryptographic keys and
associated meta-data in the keywrap; and the mission package,
which contains the symmetric keys to be distributed. The
participant record is a plaintext data structure that holds a set of
data sub-structures, one for each authorized recipient, that in
turn contain encrypted copies of a Content Encryption Key
(CEK) that is used to encrypt the mission package. The CEK is
replicated once for each participant, and encrypted with a Key
Encryption Key (KEK) derived using ECDH as follows:

KEKi = ECDH(kpri-e, kpub-i, UKMKA),

where kpub-i is the i
th
 recipient’s public key agreement key. Kpri-e

is the keywrap issuer’s ephemeral private key agreement key
generated only for the present keywrap. Ephemeral key
agreement key is required because ECDH with two static keys
is not approved for key agreement by NIST [6].

The mission package contains an arbitrary number of
symmetric keys that are to be used by the authorized recipients
for the encryption of data. The meta-data that describes what
the keys are used for, such as key expiration times and
algorithm specifiers is stored separately in the Mission Package
Metadata Storage (MPMS). This is done for two reasons: first,
the mission package is encrypted using AES keywrap mode
with the CEK [7], which is a special version of AES that is
designed to safeguard only keys, and second, there are
information assurance implications to mixing secret keys and
metadata. While not strictly secret, key meta-data can leak
information about the application that will use the keys. To
further enforce separation, the key metadata is also encrypted
but with an irreversible Key Derivation Function (KDF) using
the CEK and the second nonce UKMMPEK. The combination of

3

the metadata and mission key set is collectively signed by the
device issuing the keywrap.

LOCKMA implements cryptographic functions via the
RELIC [8] and TomCrypt [9] open source toolkits. It parses
certificates using an X.509 certificate parser [10]. Keywrap
messages are formatted using the Cryptographic Message
Syntax (CMS) [11], and parsed using an ASN.1 syntax parser
[12].

Being a software library, LOCKMA can provide robust and
flexible key management functionality, but it cannot guarantee
that generated secret keys are not leaked. This is because
LOCKMA’s ability to enforce security policies – is limited by
the degree of assurance of the application it is linked into. In
the next section a high-assurance version of LOCKMA
implemented in hardware, whose goal is to allow software to
use keys but never possess keys, is described.

IV. SHAMROCK COPROCESSOR

The overarching goal of the SHAMROCK processor is to
provide the static cryptographic operations necessary to create
secure cryptographic channels between communicating devices
without hampering the system designer’s ability to conform to
arbitrary communication protocols and system architectures.

High-assurance is an important goal of many military
systems. Generally, when we use the term assurance, we are
speaking of assurance that established security policies (such
as the protection of secret key material) are being obeyed by
the system under a variety of operating conditions. In the case
of cryptographic processing, these policies are relatively
straightforward:

1. The value of secret keys used to encrypt data or other

keys must never leak out.

2. The value of critical secret data must never leak out.

Here, we differentiate between data and keys, as a leak of
key material can greatly amplify data loss. Keys are used in a
limited context – for example, as an input to a streaming
encryption/decryption function – and are easier to protect than
user data, which is used (in unencrypted form) in a potentially
unlimited set of contexts. Further, those contexts frequently
have usability constraints placed on them that limit applicable
data security techniques. Therefore, any assurance arguments
made for LOCKMA, or its hardware implementation described
below can only make claims on policy 1. However, the ease of
deployment of LOCKMA or SHAMROCK in secure systems
has lessened the burden on a system designer in meeting policy
2 as effective key management is easier to achieve and use in
order to adequately protect data, as the effective key
management is essential to effective data protection.

The primary goal of the SHAMROCK processor is to
encapsulate the LOCKMA key management system in a high-
assurance “shell” that is as agnostic to protocol as possible.
This way the nuances of application specific encoding methods
such as CMS, X.509 certificate parsing, and Ethernet can be
separated from the core functionality of generating and
distributing keys and providing cryptographic services. This
separation is very much akin to the goals of the LOCKMA

software library, but in a physical form and with a focus on
high-assurance and separation of critical cryptographic
functionality from application functionality. The primary
methods for achieving high-assurance are:

 Rigid and architecturally enforced separation of data and

key material into concentric security zones.

 Minimized and rigidly defined external interfaces.

 Physically verifiable inter-zone interfaces.

Using these techniques which will be described in
following sections, SHAMROCK achieves an important goal:
Complex systems that implement functionality in software can
use cryptographic functions whose security relies on secret key
material without ever actually possessing that key material.

A. Threat Model

SHAMROCK is a synthesizable coprocessor that is written
in a Hardware Description Language (HDL) and can therefore
be implemented in an Application-Specific Integrated Circuit
(ASIC) or a Field Programmable Gate Array (FPGA). Salient
assumptions of the operating environment are:

 Malicious actors may obtain physical control of some

SHAMROCK-enabled devices, and will be able to query

and attempt to utilize SHAMROCK for cryptographic

operations.

 SHAMROCK and a separate non-volatile memory

(NVRAM) used for long-term storage of credentials are

inside of a physical protected volume. The FPGA device

for prototyping does not have on-chip NVRAM, so the

architecture includes an NVRAM Interface.

 Mitigation against side-channel attacks, such as

Differential Power Analysis (DPA) [13], will be provided

separately from the SHAMROCK core. The SHAMROCK

architecture does not preclude the inclusion of side-

channel-resistant crypto-cores, but the system described in

this paper does not directly address this type of attack.

 The core is implemented correctly, and without any added

nefarious logic.

B. High Level Architecture

Fig. 4 shows the high level architecture boundary of
SHAMROCK. SHAMROCK has three major functions: key
protection and manipulation, streaming symmetric
encryption/decryption, and key management protocol. All three
of these functions are architecturally separated from one
another, and communicate via simple interfaces that are
designed to minimize attack surface. The SHAMROCK
prototype currently implements an AES-CTR (counter) mode
encryptor/decryptor [14]. However, this encryptor/decryptor
can be replaced with any user-supplied symmetric cipher
block.

The key management functionality is divided up into an
untrusted protocol control module, which hereafter is referred
to as the black module, and a monolithic high-assurance key
management (HAKM) module that implements key derivation,
key agreement, and key protection, which is called the red
module.

4

Fig. 4. SHAMROCK high level architecture.

The black module is implemented with a small “soft”
microprocessor (e.g., the Xilinx MicroBlaze) that is
responsible for external communication as well as parsing and
generation of cryptographic messages. The microprocessor is
the master on an AMBA High-performance Bus (AHB) [15]
and drives a number of connected devices including I/O
transceivers, RAM, ROM and the HAKM red module.

The black module microprocessor boots from a special
trusted persistent ROM (bootloader) and uses the HAKM red
module to verify its run-time code image, which is digitally
signed by a trusted third party. External interfaces generally
obey a simple First-In-First-Out (FIFO) protocol for maximum
flexibility. Those interfaces are described below:

Password (red): SHAMROCK’s root of trust and root
credentials are persistent across power cycles. These data are
“unlocked” by supplying a password to a special red port at
power-on time.

Command (black): A command-line based interface to
SHAMROCK’s key management subsystem.

Keywrap IO (black): An external-facing port used to receive
and transmit keywraps into the Over-The-Air-Keying (OTAK)
interface.

Plaintext streaming port (red): The red interface to the
streaming symmetric encryptor/decryptor.

Ciphertext streaming port (black): The black interface to the
streaming symmetric encryptor/decryptor.

With the exception of the password port, none of these
interfaces directly connects to the HAKM red module. Rather,
the protocol control black module handles all input and output,
and only passes vetted data (primarily keywraps) through.
Except for the key RAM output, which provides received keys
for the streaming encryptor/decryptor, the HAKM red module
does not have connections through which keys can be
divulged.

Similarly, the HAKM red module has a minimal interface
to the rest of the SHAMROCK system. Its ports are described
below:

KM control (black): A command/status interface used to pass

data and commands to the HAKM red module.

Password (red) – An input-only port used to receive passwords

from outside the device.

Key RAM (red) – An output port that serves received keys out

to the streaming encryptor/decryptor.

Given the assumption that the protocol control black
module is untrusted, the HAKM red module thus implements a
concentric security architecture that utilizes cryptographic
functions to control information flow and enable security
guarantees.

C. High Assurance Key Management Architecture

The design goal is to ensure that a compromised protocol
control module cannot extract root secrets, or secrets generated
in another SHAMROCK device from the local HAKM red
module. The HAKM red module design therefore assumes that
it is being used/controlled by a competent external entity, but it
does not trust that entity to manage or control secret key
material.

The HAKM red module security is strongest when it is
communicating keywraps to/from other HAKM modules (as
opposed to LOCKMA software instances, which can also
generate and unwrap keywraps). This is due to a founding
principle of the HAKM module architecture; secret material is
generated deep inside of the HAKM module and can only be
exported by modifying (e.g., encrypting or hashing) it using
other data/key material generated inside of an HAKM module.
Thus, keys generated inside of the HAKM module can only
exist in plaintext form when they are inside of a trusted HAKM
module, with the exception of keys that are supplied to the
encryptor/decryptor. This is underpinned by the “logical
unknowability” of data in key generation regions of the
HAKM module.

This design principle is illustrated in Fig. 5, in which two
SHAMROCK devices are communicating over a wireless
channel. The concentric rectangles represent the security zones
in the HAKM module, with the inner area (Zone 0) containing
root secrets generated inside of the HAKM module, and the
next region (Zone 1) denoting ephemeral secrets such as
dynamic keys. AES encryption is employed as a one-way
function leading from the ephemeral Zone 1 to the outermost
Zone 2, which could be considered outside of the high-
assurance boundary. While the root secret (represented as the
inner-most key in Zone 0, Fig. 5) is used to transform the
ephemeral secret (represented as the key in Zone 1, Fig. 5)
using AES, the root secret itself never leaves the confines of
Zone 0. As the inputs to the AES unit can only come from
Zones 0 and 1, then the secret is protected by encryption
outside of the HAKM module (i.e., Zone 2 and beyond).

This high assurance architecture is made possible by
several combined technologies and techniques, including in-
situ key generation, and physically directed cryptographic
functions. Directed cryptographic functions are functions such
as AES or ECDH with their physical implementation laid out
so that they can only be used to transfer and transform data
from one physical location to another. Their layout in the
system is therefore tightly linked to the aggregate functions in
which they will be used.

As an example, in the key management scheme laid out in
Section III, an intermediate step in the keywrap generation is to

5

encrypt a set of keys with AES keywrap mode using a CEK.
The plaintext keys to be encrypted reside in an ephemeral but
secret Zone 1 memory, and will be encrypted and sent out to a
Zone 2 black memory using a key that also resides in the Zone
1 memory. This operation could be carried out by a general-
purpose AES engine that has read and write access to either
memory, but such an arrangement would be vulnerable to
misuse of the AES unit, either by copying plaintext keys across
memories or encrypting with keys known to the adversary. In
contrast, dedicated physically directed AES units are used,
which can only output to a designated location, and take inputs
(keys and data) from another separate designated location.

Fig. 5. HAKM module concentric secure zones.

Similarly, since the keywrap process requires unwrapping,
there must be a reciprocal AES function that decrypts keys into
the Zone 1 memory. Decryption from the black Zone 2
memory into the red Zone 1 memory can only be done using a
key that already resides in the red Zone 1 memory. Since the
contents of the key package are secret, decrypting ciphertext
from the black Zone 2 memory into the red Zone 1 memory
using a key in the red Zone 1 memory will result in secret data
in the red Zone 1 memory, which is unknowable to the outside
of Zone 1. This complies with the security tenet that all
information originated from another HAKM module residing
in the red Zone 1 memory will be secret and unknowable.

In the SHAMROCK design, the AES units used for high
assurance purposes are all physically separate units, whose
inputs are rigorously and physically verified and controlled
during the design process. Fig. 6 shows the internal layout of
the SHAMROCK HAKM module. From the outside, the
module appears to have a contiguous memory space. In reality
the HAKM module memory is broken up into the three zones
illustrated in Fig. 5, with the memory in the outer
SHAMROCK protocol control region considered a fourth.
These zones are defined as follows:

Zone 0: Root keys and other long-term credentials. This region

is rigorously controlled. Its contents are used for a limited set

of operations, such as signing and key agreement.

Zone 1: Ephemeral secret information. Ephemeral keys for key

agreement, as well as keys sent and received in keywraps.

Content Encryption and Key Encryption Keys are generated

and temporarily stored here.

Zone 2: Black staging. A non-secret memory that is used to

stage and marshal data during long atomic operations such as

provisioning or keywrap generation.

Zone 3: Black protocol. This memory is outside of the HAKM

module, which is not uniform and contiguously addressed with

respect to the HAKM memory.

Fig. 6. SHAMROCK HAKM internal structure.

The interface to the HAKM module is via input and output
FIFO memories and a special command mailbox register, each
of which is individually addressable on the external AHB bus
by the protocol control module. Input data can be written into
the FIFOs, then a write command executed via the mailbox. On
command execution, the HAKM takes control and copies that
data into the specified location in Zone 2 memory. Attempting
to copy data into any other zone by specifying an address that
is mapped outside of the Zone 2 memory will result in an error
because there is no direct path available.

D. SHAMROCK Operations

The following description is given at high level with
respect to the current FPGA prototype of SHAMROCK, but is
sufficient for understanding its operations in general. An
example of the constraints placed by the selected FPGA is its
lack of on-chip non-volatile memory, thus requiring the use of
an external NVRAM.

In normal operation, the device is controlled by the
software running on the protocol control module in Zone 3,
which also handles all external interaction. Booting the
protocol control module is thus the first step in SHAMROCK
operation. SHAMROCK has an internal bootloader embedded
into the FPGA bitstream, which is protected with the FPGA’s
built-in security features. The device relies on an external
NVRAM to store an encrypted boot image. The role of the
bootloader is to read a software image from the NVRAM,
verify its signature for authentication, decrypt, and then start
the execution. If the verification fails, the device halts.

When SHAMROCK is first powered on, it has no secret
credentials and therefore no key management capability. It
must be provisioned with at least one private and public key
pair for key agreement purpose. In the case of a keywrap
issuer, the device must also be provisioned with a pair of
signing private and public keys. The secret portion of these key
pairs is generated using the ring oscillator based true random
number generator (TRNG) to seed a pseudo-random number
generator (PRNG) (see Fig. 6). The storage of these long term
key pairs is encrypted with a key generated by a user password.
In addition, the entire provisioning function is designed to be
atomic, which means that a single command triggers private
key generation, password entry, and encrypted storage. These
important keys are stored in Zone 0, the long-term secret store,
which can only be written when the device is powered on. The
use of these keys is then physically restricted to only certain
Zone 1 functions.

After the SHAMROCK device is fully provisioned, it must
be unlocked before use. This atomic operation involves

6

receiving a password entered through the password port and
decrypting the long term credentials. The public key(s) and a
couple of nonces (UKMKA and UKMMPEK) generated with the
PRNG are placed in Zone 3. The device is now ready to
process or, if it has a signing key, generate keywraps.

The first step in keywrap construction is the generation of
one or more symmetric mission keys for encrypted
communications between SHAMROCK-embedded systems.
The key generation request is initiated by the protocol control
module to the HAKM module, which creates and places them
in Zone 1 memory. Note that the protocol control module
knows of the existence of these keys, but has no ability to
understand them. The protocol control module then generates
metadata associated with each key, such as its creation time,
expiration time, etc., and places them in Zone 2.

The protocol control module then requests the HAKM
module to generate a CEK and encrypt the mission key
package with a gate keeper AES encryptor going from Zone 1
to Zone 2. For the reason explained earlier in Section III, a
derivation of the CEK is used to encrypt the metadata already
in Zone 2.

Next the combined metadata and mission key package is
signed and ready for insertion in the final keywrap structure.
Next, participant records, one for each member of the
communicating group, are created. The protocol control
module directs the HAKM module to produce in Zone 1 a
KEK for each intended participant using the participant’s
public key agreement key. The CEK is encrypted multiple
times, one for each participant with its respective KEK.
Associated participant identification tags (UIDs) are added to
complete the participant record. The keywrap is completed by
adding the sender’s certificate, EPK, and the nonces. The now
fully formed keywrap is signed before it is sent out.

 When a keywrap is received, the recipient unwraps it to
extract the current mission key set. This process is essentially
the reverse of the above keywrap generation process. The only
exception is that only the participant record associated with the
recipient is decrypted with its KEK to retrieve the CEK.

E. Prototype Implementation and Evaluation

The SHAMROCK coprocessor has been prototyped on a
Xilinx Kintex 7 FPGA-based testbed (Fig. 7). We have
measured the performance of two main key management
operations in the SHAMROCK prototype (with a 50 MHz
clock). In a rekeying operation, the timing of generating and
receiving keywraps on the FPGA are 337 ms and 130 ms,
respectively. In a typical usage scenario, we assume that the
streaming AES is used 100% of the time while the key
management functionality is used 5% of the operational time.
The average dynamic power for this scenario is ~53 mW. In
particular, the key wrapping and key unwrapping operations
consume ~23 mw and ~ 141 mw, respectively.

V. SUMMARY AND ONGOING WORK

In this paper we have described a self-sufficient
synthesizable high assurance cryptography and key
management coprocessor. Comparing to its software

counterpart, the hardware processor provides additional
security and performance through a high assurance architecture
and design. Ongoing work includes the development of a
reference secure embedded system architecture for bringing
dynamic rekeying to the secure computing and
communications of distributed embedded systems [16].

Fig. 7. SHAMROCK testbed.

REFERENCES

[1] Kahn D., The codebreakers: the comprehensive history of secret

communication from ancient times to the Internet, Scribner, New York,

1996.
[2] Khazan, R., Figueriredo, R., McLain, C., Cunningham, R., Securing

Communication of Dynamic Groups in Dynamic Network-Centric

Environments, MILCOM 2006, Washington, DC, 23 October 2006.
[3] Adams, C. and Lloyd, S., Understanding PKI: concepts, standards, and

deployment considerations, Addison-Wesley Professional, 2003.

[4] NSA Suite B Cryptography, Suite B Implementers' Guide to NIST SP
800-56A, July 28, 2009. (https://www.nsa.gov/ia/_files/suiteb_

implementer_g-113808.pdf, accessed 5 April 2016)

[5] Announcing the ADVANCED ENCRYPTION STANDARD (AES),
NIST, 26 November 2001. (http://csrc.nist.gov/publications/fips/

fips197/fips-197.pdf, accessed 5 April 2016)

[6] Barker, E., Chen, L., Roginsky, A., and Smid, M., Recommendation for
Pair-Wise Key Establishment Schemes Using Discrete Logarithm

Cryptography, NIST, May 2013. (http://nvlpubs.nist.gov/nistpubs/

SpecialPublications/NIST.SP.800-56Ar2.pdf, accessed 5 April 2016)
[7] AES Key Wrap Specification, NIST, 16 November 2001. (http://csrc.

nist.gov/groups/ST/toolkit/documents/kms/key-wrap.pdf, accessed 5

April 2016)
[8] The relic-toolkit Open Source Project on Open Hub.

(https://www.openhub.net/p/relic-toolkit, accessed 5 April 2016)

[9] St Denis, T., LibTomCrypt Developer Manual. (http://www.opensource.
apple.com/source/CommonCrypto/CommonCrypto-55010/Source/

libtomcrypt/doc/libTomCryptDoc.pdf, accessed 5 April 2016).

[10] X.509, Telecommunication Standardization Sector of ITU (ITU-T),
October 2012. (https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-

REC-X.509-201210-I!!PDF-E&type=items, accessed 5 April 2016)

[11] Housley, R., Cryptographic Message Syntax (CMS), IETF Network
Working Group, September 2009. (https://tools.ietf.org/html/rfc5652,

accessed 5 April 2016)

[12] Introduction to ASN.1, ITU-T. (http://www.itu.int/en/ITU-T/asn1/
Pages/introduction.aspx, accessed 5 April 2016)

[13] Ambrose, J. et al., Power Analysis Side Channel Attacks: The Processor

Design-level Context, Omniscriptum Gmbh & Company Kg., 2010.
[14] Kipmaa, H., Rogaway, P., and Wagner, D., Comments to NIST

concerning AES Modes of Operations: CTR-Mode Encryption.
(http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/

ctr/ctr-spec.pdf, assessed 5 April 2016)

[15] AMBA Specifications, ARM. (http://www.arm.com/products/system-
ip/amba-specifications.php, accessed 5 April 2016)

[16] Vai, M., Nahill, B., Kramer, J., Geis, M., Utin, D., Whelihan, D., and

Khazan, R., Secure Architecture for Embedded Systems, IEEE High
Performance Extreme Computing Conference, September 2015.

© 2016 Massachusetts Institute of Technology.
MIT Proprietary, Subject to FAR52.227-11 Patent Rights - Ownership by the contractor (May 2014)
Delivered to the US Government with Unlimited Rights, as defined in DFARS Part 252.227-7013 or 7014 (Feb 2014). Notwithstanding any copyright notice, U.S.
Government rights in this work are defined by DFARS 252.227-7013 or DFARS 252.227-7014 as detailed above. Use of this work other than as specifically
authorized by the U.S. Government may violate any copyrights that exist in this work.

https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.509-201210-I!!PDF-E&type=items
https://www.itu.int/rec/dologin_pub.asp?lang=e&id=T-REC-X.509-201210-I!!PDF-E&type=items

7

